MATH 505 Project: Ising model – Phase transition

نویسندگان

  • Xin-Zeng Wu
  • Di Li
  • Zheng Dai
چکیده

Ising model is a mathematical model of ferromagnetism in statistical mechanics, which was invented by Wilhelm Lenz (1920). Wilhelm Lenz gave the model as a problem to his student Ernst Ising. Ising solved this problem in one-dimension in his PHD thesis (1924)[1], which worked on linear chains of coupled magnetic moments. Rudolf Peierls named this model by Ising model in his 1936 publication “On Ising’s model of ferromagnetism”. However, this model was ignored by most scientists for many years and even Ising himself gave up due to the di culty of solving two-dimensional Ising model. Almost twenty years later, Lars Onsager, winner of the 1968 Nobel Prize in Chemistry, solved two dimensional Ising model in 1944 and exhibited phase transition. And then Ising model enjoyed increased popularity and took its place as the preferred basic theory of all cooperative phenomena. In that time, Ising model is the only one which o↵ers much hope of an accurate study of mechanism. More and more people involved in solving high dimensional Ising model. They modeled phase transition in higher dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

On phase transitions of the Potts model with three competing interactions on Cayley tree

In the present paper we study a phase transition problem for the Potts model with three competing interactions, the nearest neighbors, the second neighbors and triples of neighbors and non-zero external field on Cayley tree of order two. We prove that for some parameter values of the model there is phase transition. We reduce the problem of describing by limiting Gibbs measures to the problem o...

متن کامل

A boundary field induced first-order transition in the 2D Ising model

Abstract In a recent paper, Clusel and Fortin (2006 J. Phys. A: Math. Gen. 39 995) presented an analytical study of a first-order transition induced by an inhomogeneous boundary magnetic field in the two-dimensional Ising model. They identified the transition that separates the regime where the interface is localized near the boundary from that where it propagates inside the bulk. Inspired by t...

متن کامل

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014